CLONAL PALM SERIES 2 (CPS2)

SAMSUL KAMAL ROSLI; ZAMZURI ISHAK; FADILA AHMAD MALIKE; NOR AZWANI ABU BAKAR; MOHD NAQIUDDIN HUSRI; DALILAH ABU BAKAR and AHMAD TARMIZI HASHIM

MPOB INFORMATION SERIES • ISSN 1511-7871 • JULY 2018

he Malaysian oil palm industry recorded an average oil yield of 3.53 t ha⁻¹ yr⁻¹ in 2017 (MPOB, 2018). It was postulated that the oil palm has the genetic potential of attaining oil yield of up to 18.5 t ha⁻¹ yr⁻¹ (Corley,

1998). To narrow the yield gap, genetic gain through breeding and vegetative propagation could provide the much needed boost in yields (Kushairi *et al.*, 2010). Planting clonal oil palm under good agricultural practices (GAP) has proven to increase yields by at least 10%-15% (Soh, 1986). Despite its potential, less than 5% of oil palm plantings in Malaysia are derived from tissue culture.

Therefore, to improve productivity, planting of oil palm clones should be intensified. Following the discovery of KARMA (Ong-Abdullah *et al.*, 2015), a tool to screen clonal abnormality has provided added confidence for the industry to utilise clones in their fields (Ong-Abdullah *et al.*, 2016). Generally, the focus in clonal propagation of oil palm has been on production of high yielding materials (Zamzuri, 2011; Zulkifli *et al.*, 2017). In addition to producing high yield, materials have also been selected for compactness to improve productivity. Compact palms can be planted at higher density.

THE TECHNOLOGY

MPOB initiated a mass propagation programme for clonal planting materials named CPS1 (Clonal Palm Series 1) in 2017 (Tarmizi *et al.*, 2017). Subsequently, palm 0.150/2657 were selected and used as ortet for cloning. Its ramets were planted and evaluated in several locations including Kluang (*Table 1* and *Figure 1*) and Bagan Datuk (*Table 2*). At nine years after planting, CPS2 has the potential of achieving 35.7 t ha⁻¹ yr⁻¹ FFB with an oil yield of 10.8 t ha⁻¹ yr⁻¹ while planted at a density of 198 palms ha⁻¹ (Zamzuri, 2011) as opposed to the 136 or 148 palms ha⁻¹. In addition, reclones of CPS2 showed almost zero mantling (*Figure 2*).

NOVELTY OF CPS2

- 1. Distinctive morphological traits:
 - Thin petiole cross section (PCS) of 15.7 cm² vs. 39.3 cm² of DxP standard cross.

MPOB TT No. 634

- Short rachis length (RL) of 4.5 m *vs.* 6.1 m of DxP standard cross.
- Slow height increment (HT) of 24 cm yr⁻¹ *vs.* 40 cm yr⁻¹ of DxP standard cross.
- High bunch index (BI) of 0.51 *vs* 0.30 of DxP standard cross.
- 2. Suitable for high density planting at 198 palms ha⁻¹.
- 3. Medium-sized bunches.

Figure 1. CPS2 planted at MPOB Research Station Kluang, a) Three-year-old palm with high bunch number and b) Ten year palms showing more space between fronds among adjacent palms planted at high density of 198 palms ha⁻¹.

TABLE 1. VEGETATIVE PERFORMANCE OF CPS2 CLONE AT MPOB RESEARCH STATION KLUANG

						0 0						
					Mean 2014							
N	No.	Progeny Code	Pedigree	n	PCS	RL	HT	LAI	BI			
					(cm ²)	(m)	(m)	(m ²)				
	1	TR 1	KLU 0.150/2657	19	17.69	4.71	1.50	4.18	0.49			
	2	TR 11	KLU 0.150/2657	21	14.89	4.39	1.41	3.85	0.54			
	3	TR 12	KLU 0.150/2657	20	13.38	4.27	1.49	3.38	0.53			
	4	TR 2	KLU 0.150/2657	20	16.27	4.56	1.53	3.98	0.48			
	5	TR 3	KLU 0.150/2657	20	15.92	4.55	1.22	4.00	0.46			
	6	TR 4	KLU 0.150/2657	10	18.34	4.72	1.54	4.43	0.56			
	7	TR 4 + (TR 13)	KLU 0.150/2657	4	15.34	4.42	1.23	4.18	0.44			
	8	TR 5	KLU 0.150/2657	20	15.03	4.63	1.42	3.82	0.52			
	9	TR 6	KLU 0.150/2657	20	15.80	4.55	1.61	3.96	0.5			
1	10	TR 8	KLU 0.150/2657	10	15.91	4.47	1.30	3.69	0.54			
1	1	DxP Std Cross	0.212/270 x 0.174/480	19	39.34	6.05	2.34	6.79	0.3			
I	MEA	AN		164	15.74	4.53	1.44	3.91	0.51			
5	SOU	RCE OF VARIAT	ION	df	MS	MS	MS	MS	MS			
I	Betw	veen family		9 3	31.55**	0.35**	0.26**	1.22**	0.02			
I	With	nin family		154	7.60	0.06	0.04	0.39	0.00			

Family Mean for Vegetative Measurement in Trial 0.462Date Planted: November 2006Material: CPS2Breeding Design: Clonal

Note: n= number of palms, PCS= petiole cross section, RL= rachis length, HT= height, LAI= leaf area index, BI= bunch index.

TABLE 2. YIELD PERFORMANCE OF CPS2 CLONE AT MPOB RESEARCH STATION BAGAN DATUK

Family Mean fo	Family Mean for Bunch Yield in Trial 0.473										
Date Planted: December 2007	Material: CPS2	Breeding Design: Clonal									

Materials	Year 4		Year 5		Year 6		Year 7			Year 8			Year 9					
Materials	FFB	BNo	BWT	FFB	BNo	BWT	FFB	BNo	BWT	FFB	BNo	BWT	FFB	BNo	BWT	FFB	BNo	<mark>BWT</mark>
CPS2	95.7	29.0	3.4	133.2	30.0	4.4	167.5	27.0	6.2	175.9	24.0	7.3	160.3	22.0	7.2	164.4	18.0	9.2
DxP	89.0	20.0	4.0	100.6	18.0	5.6	134.5	17.0	7.7	164.6	19.0	8.6	192.3	19.0	9.9	167.9	13.0	9.9

Note: Year (no)= yield recording after planting, FFB= fresh fruit bunch (kg palm⁻¹ yr⁻¹), BNo= bunch number, BWT= average bunch weight (kg).

Figure 2. Cross-section of CPS2 fruits.

BENEFITS AND ADVANTAGES

- Can be planted at higher density (example 198 palms ha⁻¹).
- Higher density planting improves productivity per hectare.
- Potential of achieving 35.7 t ha⁻¹ yr⁻¹ FFB with an oil yield of 10.8 t ha⁻¹ yr⁻¹.

REFERENCES

Corley, R H V (1998). What is the upper limit to oil extraction ratio? *Proc. Oil and Kernel Production in Oil Palm*—*A Global Perspective.* PORIM, Kuala Lumpur. p. 256–269.

Meilina Ong-Abdullah; Jared M Ordway; Nan Jiang; Siew-Eng Ooi; Sau-Yee Kok; Norashikin Sarpan; Nuraziyan Azimi; Ahmad Tarmizi Hashim; Zamzuri Ishak; Samsul Kamal Rosli; Fadila Ahmad Malike; Nor Azwani Abu Bakar; Marhalil Marjuni; Norziha Abdullah; Zulkifli Yaakub; Mohd Din Amiruddin; Rajanaidu Nookiah; Rajinder Singh; Eng-Ti Leslie Low; Kuang-Lim Chan; Norazah Azizi; Steven W. Smith; Blaire Bacher; Muhammad A Budiman; Andrew Van Brunt; Corey Wisch Meyer; Melissa Beil; Michael Hogan; Nathan Lakey; Chin-Ching Lim; Xaviar Arulandoo; Choo-Kien Wong; Chin-Nee Choo; Wei-Chee Wong; Yen-Yen Kwan; Sharifah Shahrul Rabiah Syed Alwee; Ravigadevi Sambanthamurthi and Robert A Martienssen (2015). Loss of Karma transposon methylation underlies the mantled somaclonal variant of oil palm. Nature, 525: 533-537.

Meilina Ong-Abdullah; Jared M Ordway; Nan Jiang; Siew-Eng Ooi; Norashikin Sarpan; Nuraziyan Azimi; Ahmad Tarmizi Hashim; Zamzuri Ishak; Samsul Kamal Rosli; Rajanaidu Nookiah; Rajinder Singh; Eng-Ti Leslie Low; Mohit Sachedeva; Steven W Smith; Nathan Lakey; Robert A Martienssen and Ravigadevi Sambanthamurthi (2016). Tissue culture and epigenetics. *The Planter*, 92: 741-749.

MPOB (2018). *Malaysian Oil Palm Statistics* 2017. 37th Edition. MPOB, Bangi, Selangor.

Kushairi, A; Tarmizi, A H; Zamzuri, I; Ong-Abdullah, M; Samsul Kamal, R; Ooi, S E and Rajanaidu, N (2010). Production, performance and advances in oil palm tissue culture. *Proc. of the International Seminar on Advances in Oil Palm Tissue Culture*. International Society for Oil Palm Breeders (ISOPB). 29 May 2010. Yogyakarta, Indonesia.

Soh, A C (1986). Expected yield increase with selected oil palm clones from current DxP seedling materials and its implications on clonal propagation, breeding and ortet selection. *Oleagineux*, *41*(2): 51-56.

Tarmizi, A H; Zamzuri I; Samsul Kamal, R; M; Naqiuddin, M H; Dalilah A B and Ong-Abdullah, M (2017). P456 - 1st MPOB Clonal Oil Palm Series (CPS1). *Malaysian Commercialization Year 2017*, Technology Park Malaysia. Kuala Lumpur. 7 July 2017.

Zamzuri, I (2011). MPOB clonal propagation programme. *ISOPB International Seminar on Breeding for Sustainability in Oil Palm*. Convention Centre, Kuala Lumpur.18-11-2011.

Zulkifli, Y; Norziha, A; Naqiuddin, M H; Fadila, A M; Nor Azwani, A B; Suzana, M; Samsul, K R; Ong-Abdullah, M; Singh, R; Ghulam Kadir Ahmad Parveez and Kushairi, A (2017). Designing the oil palm of the future. *J. Oil Palm Res., Vol.* 29(4): 440-455.

For more information, kindly contact:

Head of Corporate Implementation and Consultancy Unit, MPOB 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia Tel: 03-8769 4574 Fax: 03-8926 1337 E-mail: tot@mpob.gov.my www.mpob.gov.my