GLYCEROL DERIVATIVE AS A CO-SURFACTANT IN PALM OIL-BASED MICROEMULSION FOR PRACTICAL APPLICATIONS

ISMAIL AB RAMAN; WAN NURUL FATIHAH, W Y; YUSRABBIL AMIYATI YUSOF; ROSNAH ISMAIL and HAZIMAH ABU HASSAN

MPOB INFORMATION SERIES • ISSN 1511-7871 • JUNE 2010

MPOB TT No. 466

icroemulsions are normally isotropic (or clear), very small in droplet size (<100 nm), low in viscosity and are thermodynamically stable solutions. However, the ordinary emulsions appear as milky white dispersions with higher viscosity, droplet size of >0.5 μ m and are only kinetically stable. Thus, since several years ago, the properties of the microemulsion system have attracted many researchers, formulators, manufacturers and the end-users to carry out studies on how to apply the system in producing high value-added products.

Recently, a study found palm oil-microemulsions to have potential as all-purpose liquid cleaners. (*Figure 1*), showing superior cleaning performance (*Figure 2*) and giving a better shiny appearance than the conventional liquid cleaners (Ismail *et al.*, 2007; 2008). All formulae showed good performance as cleaning solutions even after several dilutions.

TECHNOLOGY INNOVATION

The formulation of palm oil-based microemulsion solutions as all-purpose liquid cleaners requires between 10%-15% (w/w) of 1,2-hexanediol as a conventional co-surfactant in the system. However, the cost of the raw material, 1,2-hexanediol (AR grade), is ~RM 1200-RM 1400 litre⁻¹. Thus, the production of palm oil-based microemulsion solutions as all-purpose liquid cleaners is not viable with this conventional co-surfactant. Therefore, other alternative non-toxic diols that are cost-effective for the production of palm oil-based microemulsion products have been investigated in-house.

Glycerol *mono*-tert-butyl ether (*Figure 3*) was obtained from an in-house synthesis (Yusrabbil *et al.*, 2007a, b). It is a water-soluble compound (pH \sim 5 to 6) and consists of about 55%-60% glycerol *mono*-tert-butyl ether and 30%-35% unreacted glycerol.

Figure 1. Palm-microemulsion liquid cleaners.

Figure 2. The detergent cleaning tester 10 (DCT 10).

Furthermore, the product has also been purified to about 75%-80% glycerol *mono*-tert-butyl ether and ~5% glycerol. The crude product was found to be non-irritant to the skin and non-toxic to fish.

A preliminary study has found that with incorporation of 10%-15% (w/w) glycerol *mono*-tert-butyl ether ($\geq 60\%$ diol), a palm oil-based microemulsion could be formed. This study indicates that glycerol *mono*-tert-butyl ether can be used as a potential alternative co-surfactant for producing palm oil-based microemulsion products such as in agrochemicals for crop care and public health sectors, liquid cleaners with natural insect repellent properties, *etc*.

Figure 3. Glycerol mono-tert-butyl ether [Patent P120070034].

PROPERTIES OF PALM OIL-BASED MICROEMULSION LIQUID CLEANERS

The physical properties of palm oil-based microemulsion liquid cleaners for hard surfaces are shown in *Table 1*. The particle size, viscosity and pH values are approximately equivalent for all formulae. However, the conductivity values vary from 137 μ Sm to 976 μ Sm for 15% and 20% (w/w) of mixed surfactants, respectively. With a

very small droplet size (~7.5 to 9.5 nm) and low viscosity, the solutions can be applied onto hard surfaces in diluted or concentrated forms. Thus, palm oil-based microemulsions as liquid-cleaning compositions have the potential to become a superior grease and oily soil remover chosen over powdered cleaning compositions.

CLEANING PERFORMANCE OF THE PALM OIL-BASED MICROEMULSIONS AS ALL-PURPOSE LIQUID CLEANERS

The cleaning tests (*Figure* 2) conducted on a detergent cleaning tester 10 (DCT 10) machine determined that the palm oil-based microemulsion liquid cleaners (F1 and F2) showed superior and comparable cleaning performance to a commercial liquid cleaner even after several dilutions (*Figures* 4 and 5). The products also gave longer shiny effects on the cleaned hard surfaces.

TABLE 1. PROPERTIES OF PALM OIL-BASED MICROEMULSION LIQUID CLEANERS

Formula	Conductivity (µSm)	Particle size (nm)	Viscosity (cP)	pН
$F1 $ $(15\% S_A + S_B)$	137	9.5	12.6	5.0
$F2$ (15% $S_A + S_B + S_C$)	919	8.8	12.7	4.8
$F1 $ (20% $S_A + S_B$)	141	9.0	15.4	5.4
$F2$ (20% $S_A + S_B + S_C$)	976	7.5	15.1	5.1

Note: S_A and S_B are the ethoxylated non-ionic surfactants, and S_C is the sulphonated anionic surfactant.

Figure 4. Cleaning performance of palm oil-based microemulsion liquid cleaners (F1) at various ratios of dilution.

Figure 5. Cleaning performance of palm oil-based microemulsion liquid cleaners (F2) at various ratios of dilution.

ADVANTAGES OF PALM OIL-BASED MICROEMULSIONS AS ALL-PURPOSE LIQUID CLEANERS

Palm oil-based microemulsion liquid cleaners are terpene-free. Hence, the products are a viable option for use in cleaning hard surfaces due to their good cleaning performance and longer shiny effect.

Palm oil-based microemulsion liquid cleaners can be added with oil-soluble active ingredients, such as natural insect repellent, disinfectant and fragrance, which can enhance the value-addition of the products.

COST OF ANALYSIS

The cost of production (using a 5-litre small-scale reactor) for crude (~55%-60%) and purified (~75%-

80%) glycerol tert-butyl ether (GTBE) is about RM 317 and RM 600 kg⁻¹, respectively. The cost of production for GTBE should be cheaper if pilot-scale or commercial-scale plants are used. *Table 2* presents the cost of production for palm oil-based microemulsion liquid cleaners by using GTBE and conventional co-surfactants.

CONCLUSION

The study found that crude GTBE (55%-60% GMTBE; 30%-35% glycerol) and purified GTBE (75%-80% GMTBE; ~ 5% glycerol) derived from palm oil-based glycerol can be used as a potential alternative co-surfactant to replace 1,2 hexanediol, the conventional co-surfactant for producing palm oil-based microemulsion products, such as the agrochemicals for crop care and public health sectors; microemulsion-spray cleaners containing natural insect repellent, *etc*.

TABLE 2. COST OF PRODUCTION FOR PALM OIL-BASED MICROEMULSION LIQUID CLEANERS

Component	% (w/w)	Crude GTBE (~RM kg ⁻¹)	Purified GTBE (~RM kg ⁻¹)	Commercial hexanediol (~RM kg ⁻¹)
Surfactant A + B	15.0	1.20	1.20	1.20
Palm methyl ester	8.0	0.25	0.25	0.25
Perfume	0.5	1.00	1.00	1.00
Co-surfactant	12.5	37.50	75.00	125.00
Water	64.0	0.25	0.25	0.25
Total	100	40.20	77.70	127.70

REFERENCES

ISMAIL AB RAMAN; OOI, T L and SALMIAH AHMAD (2007). Palm-microemulsions containing natural insect repellent as all-purpose liquid cleaners for hard surfaces. *MPOB Information Series No.* 370.

ISMAIL, A R; OOI, T L and SALMIAH, A (2008). Microemulsions-natural insects repellent as all-purpose liquid spray cleaners for hard surfaces. A completed project report for EP 056/2003. Viva No. 425/2008(13).

YUSRABBIL AMIYATI, Y; ROZANA, A B; OOI, T L and SALMIAH, A (2007a). Process for producing etherified compounds from alcohol. Patent P120070034.

YUSRABBIL AMIYATI, Y; ROZANA, A B; OOI, T L and HAZIMAH, A H (2007b). Etherification of glycerol with tert-butanol (OS19-Session 5). Paper presented at the PIPOC 2007 International Palm Oil Congress, Kuala Lumpur Convention Centre (KLCC), 26-30 August 2007.

For more information, kindly contact:

Director-General MPOB P. O. Box 10620 50720 Kuala Lumpur, Malaysia. Tel: 03-8769 4400 Fax: 03-8925 9446 www.mpob.gov.my